
BEGINNER’S

GUIDE TO

CODING

earning to code is one of the most profoundly
life-changing things you can do. This has
always been true, but learning to code is

increasingly important in the modern world.
The reason the Raspberry Pi was created was to

challenge a drop in computer science applications
at Cambridge University. Modern computers, and
especially games consoles, were fun and powerful,
but not easily programmable.

The maker community fell in love with the
Raspberry Pi, thanks to its cheap and hackable

nature. Building and tinkering are the primary
reasons we love Raspberry Pi. Great projects use a
combination of hardware and software together.

So, whether you’re a hacker learning to make better
projects, or a would-be coder looking for a better
career, this feature is set to help you on your way.

The good news is that you don’t need to be a genius
to know coding, just as you don’t have to be a genius
to read and write. It’s actually pretty simple once you
learn a few simple concepts like variables, branching,
and loops.

Perhaps you’re brand-new to coding. Maybe you
did a little BASIC in school, or used old languages like
Pascal and Fortran. Or maybe you’re already knee-
deep in projects and just want to learn the language
that controls them.

Wherever you’re coming from, we’re here to
walk you through the basic concepts of computer
programming. We’ll demystify the whole process of
code, so you can get a better understanding of what’s
going on inside your Raspberry Pi.

L

Discover the joy and art of computer programming with your Raspberry Pi

CODING
Beginner’s Guide to

Feature

raspberrypi.org/magpi 14 January 2017

http://www.raspberrypi.org/magpi

BEGINNER’S

GUIDE TO

CODING

“I think everybody in this country should learn to program a

computer,” said Apple’s co-founder Steve Jobs, “because it

teaches you how to think.”

Code is a critical layer in our lives that sits between us

and the increasingly digital world that surrounds us. With

just a small amount of understanding how code works,

you’ll be able to perform computer tasks faster and get a

better understanding of the world around you. Increasingly,

humans and machines are working together.

Learning to use code and hardware is incredibly

empowering. Computers are really about humanity; it’s

about helping people by using technology. Whether it’s the

home-made ophthalmoscope saving eyesight in India, or

the Computer Aid Connect taking the internet to rural Africa,

code on the Raspberry Pi is making a real difference.

Coding also makes you more creative. It enables you to

automate a whole bunch of boring and repetitive tasks in

your life, freeing you up to concentrate on the fun stuff.

It also teaches you how to solve problems in your life.

Learning to how to put things in order, and how to break

down a big, seemingly impossible task into several small

but achievable tasks is profoundly life-changing.

And if you’re looking for a career boost, there’s plenty of

worse things to learn. “Our policy is literally to hire as many

engineers as we can find,” says Mark Zuckerberg, CEO

of Facebook. “The whole limit in the system is that there

just aren’t enough people who are trained to have these

skills today.”

Code Matters

Feature

raspberrypi.org/magpi 15January 2017

http://www.raspberrypi.org/magpi

BEGINNER’S

GUIDE TO

CODING

efore you go any further, let’s look at what a
program actually is. The dictionary definition
is a “set of instructions that makes a

computer do a particular thing.”
A computer program is a lot like a recipe. It has

a list of ingredients, called ‘variables’, and a list of
instructions, known as ‘statements’ or ‘functions’.
You follow the instructions from the recipe one line at
a time and end up with a tasty cake - and that’s no lie.

The real miracle of computers, however, is that
they can do the same thing repeatedly. So you can
get a machine to bake a thousand cakes without ever
getting tired. A program may contain loops that make
it do the same thing over and over again.

Programs also make decisions, and different paths
through a program can be taken. Your recipe could
make a scrummy chocolate cake or a delightful
batch of doughnuts, depending on the variables (the
ingredients) it has.

One thing that may surprise you when you begin
programming is just how little you need to know to
get started. With just a few variables, a smattering
of flow, and some functions, you can get a computer
doing all the hard work for you.

Inside your Pi
At the heart of your Raspberry Pi are billions of voltage
switches known as binary digits (or ‘bits’ for short).
There are 8,589,934,592 of them in its 1GB of RAM, to
be exact. All these switches can be set to high or low,
which is typically represented as 0 (for low or off) and
1 (for high or on). Everything you see on the screen,
hear from the speakers, and type on the keyboard is
billions of switches being turned on and off.

Obviously, it’s not that easy for humans to talk
directly to computers. It’s possible to use machine
language and send binary instructions directly to a
computer, but this isn’t where any sane person starts
(or ends if they want to remain sane).

Instead, we use a coding language to program. This
is written using easy-to-understand functions like
print(). These are then interpreted into machine
language, which the computer understands.

We’re going to use Python to learn to code. Python
is a truly great programming language. It has a rich
syntax that’s free from clutter; you don’t have to
worry about things like curly braces and static typing
that crop up in more complicated languages like Java.

With Python, you can just create code, run it, and get
things done. Python is one of the languages found most
commonly inside The MagPi, so learning it here will
help you understand lots of the code used in projects.

B

Discover the building blocks of software
and learn what goes on inside a program

What is a
Program?

Python 2 and

Python 3 are both

commonly used.

Python 3 is the

future, so we’re

going with it. Lots

of courses still teach

Python 2, and it’s

not a bad idea to

take a closer look

at the differences

between the two:

magpi.cc/2gP6zX3

Which
Python?

Python is an ‘interpreted language’.

You write the code and then run the

program. Under the hood, it's being

translated and runs on the fly. Some

languages, such as C and Java, are

compiled. You write the program, then

compile it to get a build file (written in

machine code), then you run the build.

It's a faff you can do without for now.

Compiled vs Interpreted

Feature

raspberrypi.org/magpi 16 January 2017

http://magpi.cc/2gP6zX3
http://www.raspberrypi.org/magpi

BEGINNER’S

GUIDE TO

CODING

Above Python IDLE makes it easy to create programs and
run them without having to use the command line

There are a lot

of programming

languages out

there, and they all

offer something

special. Python

is a great option

for beginners. Its

syntax (the use

of words and

symbols) is easy

to read. And it

scales all the way

up to industrial,

medical, and

scientific

purposes, so

it’s ideal for

beginners and

experts alike.

Why
 Python?You don’t have to write Python programs using a text

editor like Leafpad and run them in the terminal.
Instead, you can use a neat all-in-one solution, known
as an ‘IDE’ (integrated development environment).

IDEs combine a text editor with program-running
functionality. Often, they’ll include fancy features like
debugging and text completion.

Click Menu > Programming > Python 3 (IDLE), and
you’ll get a new window called ‘Python 3.4.2 Shell:’.
This Shell works just like Python on the command line.
Enter print("Hello World") to see the message.

You can also create programs in a built-in file
editor. Choose File > New File. Enter this program
in the window marked ‘Untitled’:

word1 = "Hello "
word2 = "World"
print(word1 + word2)

Don’t forget to include the space after ‘Hello’. Choose
File > Save As and save it as hello.py. Now press F5 on
your keyboard to run the program. (Or choose Run >
Run Module). It’ll display ‘Hello World’ in the Shell.

The advantage of using Python IDLE is that you can
inspect the program in the Shell. Enter word1, and
you’ll see ‘Hello ’. Enter word2 and you’ll see ‘World’.
This ability to inspect and use the variables in your
program makes it a lot easier to experiment with
programming and detect bugs (problems in your code).

IDE and IDLE

You don’t need to do anything to set up Python on
your Raspberry Pi. Open a terminal in Raspbian
and enter python --version. It will display
‘Python 2.7.9’. Enter python3 --version and
you’ll see ‘Python 3.4.2’.

We’re going to use Python 3 in this feature (see
‘Which Python?’ boxout). You can open Python 3
in the terminal by just typing python3.

The ‘$’ command-line prompt will be replaced
with ‘>>>’. Here you can enter Python commands
directly, just as you would terminal commands.

It’s tradition to christen any new language by
displaying ‘Hello World’. Enter print("Hello
World") and press RETURN. You’ll see ‘Hello
World’ outputted on the line below.

Using the Shell is known as Interactive Mode.
You can interact directly with the code. It’s handy
for doing maths; enter 1920 * 1080 to get the
answer: 2073600.

Mostly, you create Python programs using
a regular text editor and save the files with a
‘.py’ extension. Don’t use a word processor like
LibreOffice Writer, though – it’ll add formatting
and mess up the code.

Use a plain text editor like Leafpad (Menu >
Accessories > Text Editor). Here you can enter
your code, save it as a program, and then run the
file in the terminal. Enter python3 yourprogram.
py at the command line to run a program.

Python in the terminal
Left Python comes
pre-installed in the
Raspbian operating
system and you
can use it at the
command line

Feature

raspberrypi.org/magpi 17January 2017

http://www.raspberrypi.org/magpi

BEGINNER’S

GUIDE TO

CODING

f you’ve created a science project or
experiment, you may have come across
variables. In science, a variable is any factor

that you can control, change or measure.
In computer programming, variables are used to store

things in your program. They could be names, numbers,
labels, and tags: all the stuff your program needs.

In Python, you write the name of a variable then a
single equals sign and the word, number or object you
want to put in it.

Enter this code directly into the Shell:

foo = 1
bar = 2

Remember: the variable name is on the left, and the
thing it contains is on the right. Imagine you’ve got
two plastic cups, and you’ve scrawled ‘foo’ on the first
and ‘bar’ on the second. You put a number 1 in foo and
a number 2 in bar.

If you ever want to get the number again, you just
look in the cup. You do this in Python by just using the
variable name:

foo
bar

You can also print out variables by passing them
into a print function:

print(foo)
print(bar)

I

Variables are all-purpose containers that you use to store data and objects

Variables
Variables can also be used to contain ‘strings’.

These are groups of letters (and other characters)
that form words, phrases or other text.

Creating a string variable in Python is pretty
much the same as creating an integer, except
you surround the text with single (' ') or double
(" ") quotes.

Using double quotes makes it easier to include
apostrophes, such as print("Don’t worry. Be
Happy"). This line would break after ‘Don’ if you used
single quotes – print('Don’t worry, be happy')
– so use double quotes for now.

Why variables count
Variables make it much easier to change parts of your
code. Say you’ve got an excellent coding job at Nursery
Rhymes Inc and you’ve written a classic:

print("Polly put the kettle on")
print("Polly put the kettle on")
print("Polly put the kettle on")
print("We’ll all have tea")

The head of marketing comes in and says “our data
shows that Polly isn’t trending with the millennial
demographic.” You say “Huh!” and he barks “Change
Polly to Dolly.”

You now have to go through and change the variable
in all three lines. What a downer! But what if you’d
written thousands of lines of code and they all needed
to change? You’d be there all week.

With variables, you define the variable once and
then use it in your code. Then it’s ready for changing

Python has five

standard data types:

 Numbers

 String

 List

 Tuple

 Dictionary

Python
types

You’ll come

across ‘foo’ and

‘bar’ a lot when

learning to code.

These are dummy

placeholders and

don’t mean anything.

They could be zig

and zag or bim and

bam. Nobody’s

quite sure, but it

might be related

to the expression

‘fubar’ from the

Vietnamese war.

Foo bar?

Feature

raspberrypi.org/magpi 18 January 2017

http://www.raspberrypi.org/magpi

BEGINNER’S

GUIDE TO

CODING

at any time:

name = "Polly"

print(name + " put the kettle on)
print(name + " put the kettle on)
print(name + " put the kettle on)
print("We’ll all have tea")

This code prints out the same classic nursery rhyme.
But if you want to change the name of our character,
you only have to change it in one place:

name = "Dolly"

…and the poem will update on every line.

What’s your type?
When you create a variable in Python, it’s
automatically assigned a type based on what it is. You
can check this using the type() function. In the shell
interface, enter:

foo = "Ten"
bar = 10

Now use the type() function to check the type of
each variable:

type(foo)
type(bar)

It will say <class 'str'> for foo, and <class
'int'> for bar. This concept is important, because
different types work together in a variety of ways, and
they don’t always play nicely together.

For example, if you add together two strings they
are combined:

name = "Harry"
job = "Wizard"
print("Yer a " + job + " " + name)

This prints the message “Yer a Wizard Harry”. The
strings are concatenated (that’s a fancy programming
term for ‘joined up’). Numbers, though, work
completely differently. Let’s try a bit of maths:

number1 = 6
number2 = 9

print(number1 + number2)

Instead of concatenating 6 and 9 together to give
69, Python performs a bit of maths, and you get the
answer ‘15’.

Type casting
So what happens when you want to add a string and
an integer together?

name = "Ben"
number = 10
print(name + number)

You’ll get an error message: ‘TypeError: Can’t
convert 'int' object to str implicitly’. This error is
because Python can’t add together a string and an
integer, because they work differently. Ah, but not
so fast! You can multiply strings and integers:

print(name * number)

It’ll print ‘Ben’ ten times: you’ll get
‘BenBenBenBenBenBenBenBenBenBen’.

If you want to print out ‘Ben10’, you’ll need to
convert the integer to a string. You do this using
a str() function and putting the integer inside
the brackets. Here we do that, and store the result
in a new variable called number_as_string:

number_as_string = str(number)
print(name + number_as_string)

This code will print out the name ‘Ben10’. This
concept is known as ‘type casting’: converting a
variable from one type to another.

You can also cast strings into integers using the
int() function. This is particularly useful when you
use input() to get a number from the user; the input is
stored as a string. Let’s create a program that asks for
a number and exponent and raises the number to the
power of the exponent (using the ‘**’ symbol):

number = input("Enter a number: ")
exponent = input("Enter an exponent: ")
result = int(number) ** int(exponent)

Our first two variables, number and exponent,
are strings, while our third, result, is an integer.
We could just print out the result:

print(result)

But if we wanted to include a message, we need to
type cast result to a string:

print(number + " raised to the power
 " + exponent + " is " + str(result))

Variables, types, and type casting can be a bit tricky at
first. Python is a lot easier to use because it dynamically
changes the type of a variable to match the thing you put
in it. However, it does mean you have to be a bit careful.

Variable names

should be lower-

case words

separated by an

underscore ‘_’.

They can include

numbers, but

must start with a

letter. You can call

variables pretty

much anything, but

there’s a small list of

reserved keywords

you should avoid

(magpi.cc/2h7MH1y).

It’s a good idea to

call them something

that will be obvious

when you use them

in your program, like

‘student_name’ or

‘person_age’.

What
to call a
variable?

Feature

raspberrypi.org/magpi 19January 2017

http://magpi.cc/2h7MH1y
http://www.raspberrypi.org/magpi

BEGINNER’S

GUIDE TO

CODING

omputers are great because they don’t mind
doing the same stuff over and over again.
Their hard-working nature makes computers

ideal for doing grunt work.
When looking at variables earlier, we printed out

this nursery rhyme:

print("Polly put the kettle on")
print("Polly put the kettle on")
print("Polly put the kettle on")
print("We’ll all have tea")

We didn’t like the repetition of Polly, so we replaced it
with a variable. But this code is foolish in another way:
you have to write out the same print line three times.

We’re going to use a loop to get rid of the repetition.
The first loop we’re going to look at is a ‘while loop’.
In Python 3 IDLE, create a new file and save it as
polly.py; enter the code from the top of the next page.

We start with two variables:

name = "Polly"
counter = 0

Then we use the while statement followed by a
condition: counter < 3.

On the next line down, you press the space bar four
times to indent the code. Don’t press the TAB key
(see ‘Tabs or spaces?’ boxout).

while counter < 3:
 print(name + " put the kettle on")
 counter = counter + 1

The < symbol stands for ‘less than’.
It checks if the item on the left is less than the
item on the right. In this case, it sees if the variable
counter (which starts at 0) is less than 3. This
condition is known as ‘True’; if it wasn’t, it’d
be known as ‘False’.

Finally, enter the last line of code:

print("We’ll all have tea")

Save and run the program (press F5). It will print
‘Polly put the kettle on’ three times and then ‘We’ll all
have tea’.

While, condition and indent
There are three things here: the while statement, the
condition, and the indented text, organised like this:

while condition:
 indent

Imagine a three-way chat between all three items
in our polly.py program:

C

Get your program to do all the hard work with while and for loops

Controlling flow with

While & For
These comparison

operators are

commonly used

in conditions

to determine if

something is True

or False:

== equal

!= not equal

< less than

<= less than

or equal to

> greater than

>= greater than

or equal to

<> less than or

greater than

Comparison
operators

There’s a massive nerd debate about whether to use spaces or tabs when

indenting code. There are valid arguments on both sides, which you can learn in

this clip from HBO’s comedy Silicon Valley (magpi.cc/2gZde0M). Use spaces for

now. When you’re a hardcore coder, you can make the argument for tabs.

Tabs or spaces?

Feature

raspberrypi.org/magpi 20 January 2017

http://magpi.cc/2gZde0M
http://www.raspberrypi.org/magpi

BEGINNER’S

GUIDE TO

CODING

You must be

careful to change

the counter in

a while loop,

or you’ll get an

infinite loop. If

you delete the

line counter =
counter + 1

from our while

loop, it will run

forever: it never

goes above 0,

so the indented

code runs over

and over again.

This bug is known

as an ‘infinite

loop’ and is a bad

thing to have in

your programs.

Infinite
loops

While: “Hey Condition! What’s your status?”
Condition: “True! The counter is 0. It’s less than 3.”
Indent: “OK, guys. I’ll print out ‘Polly put the kettle
on’ and increase the counter by 1. What’s next?”

While: “Hey Condition. What’s your status?”
Condition: “True! The counter is now 1.”
Indent: “OK. I’m printing out another ‘Polly put
the kettle on’ and increasing the counter by 1.”

This goes on till the counter hits 3.

While: “Hey Condition. What’s your status?”
Condition: “False! The counter is now 3, which isn’t
less than 3.”
While: “OK guys. We’re done!”

The program doesn’t run the indented code, but moves
to the single print at the end: ‘We’ll all have tea’.

For and lists
The next type of loop is known as ‘for’. This is
designed to work with lists.

Lists are a type of variable that contain multiple
items (strings, numbers, or even other variables).
Create a list by putting items inside square brackets:

banana_splits = ["Bingo", "Fleegle",
 "Drooper", "Snorky"]

Now enter banana_splits in the Shell to view the
list. It will display the four names inside the square
brackets. You can access each item individually using
the variable name and square brackets. Enter:

banana_splits[0]

…and you’ll get ‘Bingo’. Lists in Python are zero-
indexed; that means the first item in the list is [0].
Here are each of the items. Type them into the Shell
to get the names returned:

banana_splits[0] # "Bingo"
banana_splits[1] # "Fleegle"
banana_splits[2] # "Drooper"
banana_splits[3] # "Snorky"

Zero-indexed lists can be confusing at first. Just
remember that you’re counting from 0. A for loop
makes it easy to iterate over items in a list. Create
this program and save it as splits.py:

banana_splits = ["Bingo", "Fleegle",
 "Drooper", "Snorky"]

for banana_split in banana_splits:
 print(banana_split)

It doesn’t matter what you use as the variable in
a for loop, as long as you remember to use it in your
indented code. You could put:

for dude in banana_splits:
 print(dude)

It’s common to name the list as something plural
(such as ‘names’, ‘pages’, and ‘items’) and use the
singular version without the ‘s’ for the ‘in’ variable:
‘for name in names’, ‘for page in pages’, and so on.

name = "Polly"
counter = 0

while counter < 3:
 print(name + " put the kettle on")
 counter = counter + 1

print("We’ll all have tea")

Polly.py

Feature

raspberrypi.org/magpi 21January 2017

http://www.raspberrypi.org/magpi

BEGINNER’S

GUIDE TO

CODING

our programs have been slowly getting more
powerful. We’ve learned to run instructions
in procedural order, replaced parts of our

program with variables, and looped over the code.
But another important part of programming is

called ‘conditional branching’. Branching is where a
program decides whether to do something or not.

Of course, a program doesn’t just decide whether or
not to do things on a whim: we use the sturdy world of
logic here.

The start of all this is the powerful ‘if’ statement.
It looks similar to a loop, but runs just once. The if
statement asks if a condition is True. If it is, then it
runs the indented code:

if True:
 print("Hello World")

Run this program, and it’ll display ‘Hello World’.
Now change the if statement to False:

if False:
 print("Hello World")

…and nothing will happen.
Of course, you can’t just write True and False.

Instead, you create a condition which evaluates to
True or False; a common one is the equals sign (==).
This checks whether both items on either side are
the same. Create a new file and enter the code from
password1.py. This code is a simple program that
asks you to enter a password; if you enter the correct
password, ‘qwerty’, it displays ‘Welcome’.

Be careful not to confuse the equals logic operator
== with the single equals sign =. While the double
equals sign checks that both sides are the same,
the single equals sign makes both sides the same.
Getting == and = mixed up is a common mistake for
rookie coders.

What else
After if, the next conditional branch control you need
to learn is ‘else’. This command is a companion to if
and runs as an alternative version. When the if branch
is True, it runs; when the if branch is False, the else
branch runs.

if True:
 print("The first branch ran")
else:
 print("The second branch ran")

Run this program and you’ll see ‘The first branch
ran’. But change True to False:

if False:
 print("The first branch ran")
else:
 print("The second branch ran")

…and you’ll see ‘The second branch ran’. Let’s use
this to expand our password program. Enter the code
from password2.py.

Run the program again. If you get the password
correct now, you’ll get a welcome message. Otherwise,
you’ll get an ‘incorrect password’ message.

Y

Give your programs some brains with conditional branching

Conditional

Branching
You can combine

conditions together

using logical

operators.

and Both operands

are true: (a and

b) is True

or Any operator is

true: (a or b) is

True

not Checks if

something is

false: not (a

and b) is True

if both a and b

are False.

Logical
operators

Feature

raspberrypi.org/magpi 22 January 2017

http://www.raspberrypi.org/magpi

BEGINNER’S

GUIDE TO

CODING

Elif
The third branching statement you need to know
is ‘elif’. This statement stands for ‘else if’, and sits
between the if and else statements. Let’s look at an
elif statement. Enter this code:

if False:
 print("The first block of code ran")
elif True:
 print("The second block of code ran")
else:
 print("The third block of code ran")

Run this program and you’ll find it skips the first if
statement, but runs the elif statement. You’ll get ‘The
second block of code ran’.

The else statement doesn’t have a True or False
condition; it runs so long as neither the if or elif
statements are True. (Note that the else statement here,
as always, is optional; you can just have if and elif.)

But what happens if you change both the if and elif
conditions to True? Give it a try and see whether just
if runs, or elif, or both. Experiment with removing the
else statement and play around. It’ll help you get the
hang of the if, elif, and else statements.

FizzBuzz
We’re going to show you a common program used
in computer programming interviews. It’s a classic
called ‘FizzBuzz’, and it shows that you understand if,
else, and elif statements.

First, you need to know about the modulo operator
(%). This is used to get the remainder from a division
and is similar to a divide operator. Take this function:

10 / 4 == 2.5

If we use a modulo instead, we get this:

10 % 4 == 2

Modulo turns out to be handy in lots of ways. You
can use % 2 to figure out if a number is odd or even:

10 % 2 == 0 # this is odd
11 % 2 == 1 # this is even

This program works out if a number is odd or even:

number = 10

if number % 2 == 0:
 print("The number is even")
else:
 print("The number is odd")

OK – let’s move on to FizzBuzz.

Writing FizzBuzz
The brief for our FizzBuzz is to print the numbers from 1 to
100. If a number is divisible by three (such as 3, 6, and 9),
then you print ‘Fizz’ instead of the number; if the number
is divisible by five, you print ‘Buzz’ instead.

But if a number is divisible by both 3 and 5, such as
the number 15, then you print ‘FizzBuzz’.

We’re also introducing a new element in FizzBuzz:
the ‘and’ statement. This checks if two conditions
are both True: that the number can be divided by
both 3 and 5. It only returns True if both conditions
are True.

There are three main logical operators: and, or,
and not. The first two are relatively straightforward,
but the ‘not’ operator can be more confusing at first.
Don’t worry about it too much; you’ll get the hang of
it with practice.

Enter the fizzbuzz.py code from page 25 to practise
using if, else, and elif elements and logical operators.

password = "qwerty"
attempt = input("Enter password: ")

if attempt == password:
 print("Welcome")

Password.py

password = "qwerty"
attempt = input("Enter password: ")

if attempt == password:
 print("Welcome")
else:
 print("Incorrect password!")

Password2.py

A mark of a good

programmer is to

use comments in

your programs.

Comments are

used to explain

bits of your

program to

humans. They

are completely

ignored by

the computer.

In Python, you

start a comment

line with a hash

symbol (#). It can

be on a line on

it own, or it can

come right after

a line of code. As

soon as Python

hits the #, it’ll

stop translating

whatever follows

into machine code.

Comments help

other users to read

your program, but

they will also help

you understand

what you’re doing

(long after you’ve

forgotten). It’s

a good habit to

use comments in

your programs.

Comments

Feature

raspberrypi.org/magpi 23January 2017

http://www.raspberrypi.org/magpi

BEGINNER’S

GUIDE TO

CODING

ou’ve come a long way since your first
‘Hello World’. Your programs now check
for conditions and loop over themselves.

You’re now writing programs that are known as
‘Turing complete’, named after Alan Turing, the father
of computer science and artificial intelligence, who
hacked the German Enigma code in WWII.

Now we’re going to take things a little further.
We’re going to introduce you to a form of modularity
called functions.

Functions are blocks of code that you write once
and can repeat anywhere. It’s a little like being able to
write a block of text once, and then paste it whenever
you need it.

Spotting a function
Python is packed with built-in functions,

and you’ve already been using them in your
programs. Commands like print(), len(), and

type() are all functions. They’re easy to spot: a
small command starting with a lower-case letter

and followed by a pair of parentheses ‘()’.

Y

Create the building blocks of code and make more robust programs

Using functions
Let’s take a look at a function called abs(). It stands
for ‘absolute’, and returns the absolute value of any
number you pass into it (the bit you pass in is called
the ‘argument’).

An absolute number is the positive of any number, so
if you write abs(-2) you get 2 back. Try this in the Shell:

abs(2) # returns 2
abs(-2) # returns 2

You can store the returned result as a variable:

positive_number = abs(-10)

We find it easier to read a function backwards, from
right to left. The value is passed into the parentheses,
then the function cranks it and returns a new value.
This is passed left and stored into the variable.

Defining a function
The great thing about Python is that you don’t just
use the built-in functions: you get to make your own.
These are called ‘user-defined functions’.

You create a function using the def keyword,
followed by the function name and parentheses.
Inside the parentheses, you list the parameters.
These are the same as the arguments, only inside the
definition they are called ‘parameters’.

def function(parameter):
 return parameter

Creating

Functions

You can browse or download a copy of the Python

documentation directly from the Python website

at python.org/doc. Python has a whole bunch of

built-in functions. You can view a list of all the built-in

functions on the Python documentation website

(magpi.cc/2gPsGK3).

Python documentation

Feature

raspberrypi.org/magpi 24 January 2017

http://python.org/doc
http://magpi.cc/2gPsGK3
http://www.raspberrypi.org/magpi

BEGINNER’S

GUIDE TO

CODING

Our function here doesn’t do anything; it simply
accepts a parameter and returns it.

At the end of the function definition is a colon (:).
The function code is indented by four spaces, just like
a loop or if/else branch.

The code inside the indentation runs when you call
the function. Functions typically include a return
statement which passes back an expression.

Working functions
We’re going to create a function that prints the lyrics
to Happy Birthday.

Type out the happy_birthday.py code from the
listing, then run it. In the Shell, enter:

happy_birthday("Lucy")

This function call uses the string ‘Lucy’ as the
argument. This string is passed into the function as
the parameter and is then available for use in the
indented code inside the function.

Return statements
Many functions don’t just run a block of code; they
also return something to the function call.

We saw this in abs(), which returned the absolute
value of a number. This can be stored in a variable.

In fact, we’re going to recreate the abs() function,
so you can see how it’s working behind the scenes.

In maths, you invert a positive/negative value by
multiplying a negative number by -1, like this:

10 * -1 = -10
-10 * -1 = 10

We need to create a function that takes a number
as a parameter and checks if it’s negative. If so, it
multiplies it by -1; if it’s positive, it simply returns the
number. We’re going to call our function absolute().

Enter the code in absolute.py. When the function
hits either of the return statements, it returns the
value of the number (either on its own or multiplied
by -1). It then exits the function.

Run the absolute.py code and enter the following
in the Shell:

absolute(10)
absolute(-10)

Our last program listing is a classic known as
‘FizzBuzz’; as mentioned on page 23, it will help you
to understand if, else, and elif.

You also need to know the modulo operator (%) for
FizzBuzz. This operator returns the remainder from a
division. If you don’t know how modulo works, watch
this video (magpi.cc/2h5XNRO).

Now work through the code in fizzbuzz.py.

def happy_birthday(name):
 count = 0
 while count < 4:
 if count != 2:
 print("Happy birthday to you")
 else:
 print("Happy birthday dear " + name)
 count += 1

Happy_birthday.py

def absolute(number):
 if number < 0:
 return number * -1
 else:
 return number

Absolute.py

count = 0
end = 100

while count < end:
 if count % 5 == 0 and count % 3 == 0:
 print("FizzBuzz")
 elif count % 3 == 0:
 print("Fizz")
 elif count % 5 == 0:
 print("Buzz")
 else:
 print(count)

 count += 1

Fizzbuzz.py

Here are some resources you will find useful.

GPIO Zero Essentials – magpi.cc/2bA3ZP7

This Essentials guide book explains how the GPIO Zero Python module

provides access to a bunch of features. These are used to hook up

electronics to your Raspberry Pi via the GPIO pins.

FutureLearn – magpi.cc/2h5Sthf

The Raspberry Pi Foundation has two new online training courses:

Teaching Physical Computing with Raspberry Pi and Python, and

Teaching Programming in Primary Schools.

Learning Python – magpi.cc/2h2opWC

This tutorial provided by The Raspberry Pi Foundation

has files you can download. You download the file,

called intro.py, using this command in a Terminal:

wget http://goo.gl/0ZDOdX -O intro.py
--no-check-certificate. Open

the intro.py file in IDLE; all the

instructions are in the file.

Going further

Feature

raspberrypi.org/magpi 25January 2017

http://magpi.cc/2h5XNRO
http://magpi.cc/2bA3ZP7
http://magpi.cc/2h5Sthf
http://magpi.cc/2h2opWC
http://www.raspberrypi.org/magpi

BEGINNER’S

GUIDE TO

CODING

his being the modern world, you’re not
supposed to do all the work on your
own. Instead, you will often stand on the

shoulders of other programmers who have done the
groundwork for you.

Your programs can import code created by other
people using the import statement. This enables
you to import modules and use their functions – only
they’re now known as ‘methods’.

You import the module at the command line, and
then access the functions using dot notation. This is
where you list the module, followed by a dot (.), then
the method.

A common module to use is math. This allows you
to access lots of maths methods. Open a Python Shell
and enter:

import math

You now have access to all the methods in math.
You won’t notice any difference, but if you type:

type(math)

…it will say ‘<class 'module'>’. Let’s try out dot
notation now. Type math followed by a dot and the
name of the method (function) you want to use:

math.sqrt(16)

This gives the square root of 16, which is 4.
Some methods have more than one argument. The

math.pow() method raises a number to an exponent:

math.pow(64,3)

This returns 262144.0.
You can also access constant values from a module,

which are fixed variables contained in the module.
These are like functions/methods, but without
the parentheses.

math.pi

This returns pi to 15 decimal spaces:
3.141592653589793.

math.e

This returns Euler’s number to 15 decimal spaces:
2.718281828459045.

It’s also possible to import methods and constants
from modules using from. This enables you to use
them inside your programs without dot notation
(like regular functions). For example:

from math import pi
from math import e
from math import pow

Now, whenever you type pi or e, you’ll get pi and
Euler’s number. You can also use pow() just like a
regular function. You can change the name of the
function as you import it with as:

from math import pi as p

Now when you enter p you’ll get pi to 15 decimal
spaces. Don’t go crazy renaming functions with as,
but it’s common to see some methods and constants
imported as single letters.

By creating your own functions, and importing
those created by other people in modules, you can
vastly improve the capabilities of your programs.

We’re going to take everything we’ve learnt and use
it to create a game of Pong; this is one of the world’s
first videogames.

Write out the code carefully in pong.py. Here you’ll
find variables, functions, loops, and conditional
branching: all the stuff we’ve talked about. Hopefully,
you’ll now be able to decipher most of this code.

If you’re interested in taking Pong further, this
program is similar to a version of a Pygame program
by Trever Appleton (magpi.cc/2hgkOUX). His version
has a scorecard and more advanced code. We’ve kept
ours simple so it’s easier to start with.

Hopefully this isn’t the end of your Python, or
programming, journey. There are lots of places
you can learn programming from. And we’ll have
more programming resources for you in every issue
of The MagPi.

T

Stand on the shoulders of giants by importing
other programmers’ code

Importing

Code
If you want to

learn more about

Pygame, check out

Make Games With

Python, our free

Essentials Guide to

the Pygame module.

magpi.cc/2h2m0vh

Pygame

Feature

raspberrypi.org/magpi 26 January 2017

http://magpi.cc/2hgkOUX
http://magpi.cc/2h2m0vh
http://www.raspberrypi.org/magpi

BEGINNER’S

GUIDE TO

CODING
import pygame, sys
from pygame.locals import *

Set up game variables
window_width = 400
window_height = 300
line_thickness = 10
paddle_size = 50 # try making this smaller for a harder game
paddle_offset = 20

Set up colour variables
black = (0 ,0 ,0) # variables inside brackets are 'tuples'
white = (255,255,255) # tuples are like lists but the values don't
change

Ball variables (x, y Cartesian coordinates)
Start position middle of horizontal and vertical arena
ballX = window_width/2 - line_thickness/2
ballY = window_height/2 - line_thickness/2

Variables to track ball direction
ballDirX = -1 ## -1 = left 1 = right
ballDirY = -1 ## -1 = up 1 = down

Starting position in middle of game arena
playerOnePosition = (window_height - paddle_size) /2
playerTwoPosition = (window_height - paddle_size) /2

Create rectangles for ball and paddles
paddle1 = pygame.Rect(paddle_offset,playerOnePosition, line_
thickness,paddle_size)
paddle2 = pygame.Rect(window_width - paddle_offset - line_
thickness, playerTwoPosition, line_thickness,paddle_size)
ball = pygame.Rect(ballX, ballY, line_thickness, line_thickness)

Function to draw the arena
def drawArena():
 screen.fill((0,0,0))
 # Draw outline of arena
 pygame.draw.rect(screen, white, (
(0,0),(window_width,window_height)), line_thickness*2)
 # Draw centre line
 pygame.draw.line(screen, white, (
(int(window_width/2)),0),((int(window_width/2)),window_height), (
int(line_thickness/4)))

Function to draw the paddles
def drawPaddle(paddle):
 # Stop the paddle moving too low
 if paddle.bottom > window_height - line_thickness:
 paddle.bottom = window_height- line_thickness
 # Stop the paddle moving too high
 elif paddle.top < line_thickness:
 paddle.top = line_thickness
 # Draws paddle
 pygame.draw.rect(screen, white, paddle)

Function to draw the ball
def drawBall(ball):
 pygame.draw.rect(screen, white, ball)

Function to move the ball
def moveBall(ball, ballDirX, ballDirY):
 ball.x += ballDirX
 ball.y += ballDirY
 return ball # returns new position

Function checks for collision with wall and changes ball
direction
def checkEdgeCollision(ball, ballDirX, ballDirY):
 if ball.top == (line_thickness) or ball.bottom == (window_

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

30.

31.
32.
33.
34.
35.
36.
37.

38.
39.

40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.

63.
64.

65.
66.

67.
68.
69.
70.
71.
72.

73.
74.

75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.

126.

127.
128.
129.

height - line_thickness):
 ballDirY = ballDirY * -1
 if ball.left == (line_thickness) or ball.
right == (window_width - line_thickness):
 ballDirX = ballDirX * -1
 return ballDirX, ballDirY # return new direction

Function checks if ball has hit paddle
def checkHitBall(ball, paddle1, paddle2, ballDirX):
 if ballDirX == -1 and paddle1.right == ball.left and
paddle1.top < ball.top and paddle1.bottom > ball.bottom:
 return -1 # return new direction (right)
 elif ballDirX == 1 and paddle2.left == ball.right and
paddle2.top < ball.top and paddle2.bottom > ball.bottom:
 return -1 # return new direction (right)
 else:
 return 1 # return new direction (left)

Function for AI of computer player
def artificialIntelligence(ball, ballDirX, paddle2):
 # Ball is moving away from paddle, move bat to centre
 if ballDirX == -1:
 if paddle2.centery < (window_height/2):
 paddle2.y += 1
 elif paddle2.centery > (window_height/2):
 paddle2.y -= 1
 # Ball moving towards bat, track its movement
 elif ballDirX == 1:
 if paddle2.centery < ball.centery:
 paddle2.y += 1
 else:
 paddle2.y -=1
 return paddle2

Initialise the window
screen = pygame.display.set_mode((window_width,window_height))
pygame.display.set_caption('Pong') # Displays in the window

Draw the arena and paddles
drawArena()
drawPaddle(paddle1)
drawPaddle(paddle2)
drawBall(ball)

Make cursor invisible
pygame.mouse.set_visible(0)

Main game runs in this loop
while True: # infinite loop. Press Ctrl-C to quit game
 for event in pygame.event.get():
 if event.type == QUIT:
 pygame.quit()
 sys.exit()
 # Mouse movement
 elif event.type == MOUSEMOTION:
 mousex, mousey = event.pos
 paddle1.y = mousey

 drawArena()
 drawPaddle(paddle1)
 drawPaddle(paddle2)
 drawBall(ball)

 ball = moveBall(ball, ballDirX, ballDirY)
 ballDirX, ballDirY = checkEdgeCollision(
ball, ballDirX, ballDirY)
 ballDirX = ballDirX * checkHitBall(
ball, paddle1, paddle2, ballDirX)
 paddle2 = artificialIntelligence (ball, ballDirX, paddle2)
 pygame.display.update()

Pong.py

Feature

raspberrypi.org/magpi 27January 2017

http://www.raspberrypi.org/magpi

	001_MagPi#53_DIGITAL
	002_MagPi#53-DIGITAL
	003_MPi#53_Welcome_PK_LC_MK2
	004-005_MPi#53_contents_RZ_PK_MK2
	006-007_MagPi#53_NEWS_PK_LC
	008-013_MagPi#53_NEWS_PK_LC
	009_MagPi#53-DIGITAL
	014-017_MagPi#53_COVER-FEATURE-S1-2_PK_LC_MK2_LH
	018-021_MagPi#53_COVER-FEATURE-S3-4_MK_LC_PK
	022-025_MagPi#53_COVER-FEATURE-S5-6_MK_LC_PK
	026-027_MagPi#53_COVER-FEATURE-S7_MK_LC_PK
	028_029_MPi#53_Subs_MK_PK_LC
	030-033_MagPi#53_Pegasus-SHOWCASE_MK_LC_PK
	034-035_MagPi#53_QBee-SHOWCASE_RZ_MK2_LL_PK
	036-037_MagPi#53_Pipe-SHOWCASE_MK_RZ_LC_PK
	038_039-Magpi#53_TankMonitor-SHOWCASE_MK_RZ_LL_PK
	040-041_TheMagPi_#53-DIGITAL
	042-043_MagPi#53_Getting-Started-SSH_DB_MK_LH_LC_PK
	044-045_MagPi#53_Getting-Started-CAMERA_MK2_RZ2_PK_LC
	046-047_MagPi#53_Music-Box_WALKTHROUGH_LC_PK_MK2_PK
	048-049_MagPi#53_Intro-to-c-WALKTHROUGH_MK2_DB2_RZ3_LC_PK
	050-055_Magpi#53_PiBakery_MK2_RZ2_PK_LC
	056-057_BOINC_SBS_DB_MK_RZ_LC_PK
	058-059_MagPi#53_DeepDreams-WALKTHROUGH_MK_RZ_LL_PK
	060-061_MagPi#53_SonicPI_MK_RZ_LC_PK
	062-063_MagPi#53_Spy-SBS_MK2_RZ2_PK_LC
	064-065_MagPi#53_Bouncy-Hedgehog_WALKTHROUGH_LL_MK_RZ2_PK_LL
	066-067_MPi#53_FAQ_DB_PK1_RZ4_LC_PK__MK3
	068-069_MagPi#53_Project-book-ad_MK_PK_LC
	070-077_MagPi#53_Pixel-SECONDARY_LH_MK2_LL_PK
	078-079_MagPi#53_Mirobot-REVIEW_MK2_RZ2_PK_LC
	080_MPi#53_Protoboard-REVIEW_DB_MK_RZ2_v02_LL_PK
	082-083_MagPi#53_LibreELEC-REVIEW_MK2_RZ2_PK_LC
	084-085_MagPi#53_BOOKS_MK_DB_MK_RZ_PK
	086-067_MPi#53_This-Month_DB_MK_RZ_LC_PK
	088-089_MagPi#53_Spotlight_COMMUNITY_DB_MK_RZ_LC_PK
	090-091_MagPi#53_EVENTS_DB_MK2_RZ2_LL_PK
	092-093_MagPi#53_Letters_DB_RZ_LL_PK_MK
	094_MPi#53_Comp_MK_RZ_RB_PK
	095_TheMagPi_#53-DIGITAL
	096_MagPi#53_FINAL-WORD_DB_MK_RZ_LL_PK
	097_MagPi#53_Essentials-ad_MK
	098_MagPi#53-DIGITAL
	099_MagPi#53-DIGITAL
	100_MagPi#53-DIGITAL

